
NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

National Aeronautics and Space Administration

www.nasa.gov

Using OpenMP 4 on Pleiades

July 26, 2017
NASA Advanced Supercomputing

Division

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Outline
•  Introduction

-  Pleiades Node Architecture

•  Review of OpenMP 3 Basics
-  Parallel constructs and data sharing
-  Work-sharing constructs
-  Synchronization and other important constructs

•  Vectorization with OpenMP 4
•  Compiling and Running OpenMP Codes
•  Compiling and Running MPI+OpenMP Codes

2

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Pleiades Node Architecture
•  Cluster of shared memory multi-core processors:

-  ~11400 nodes, total of 246,048 cores
-  Multiple processors per node
-  Multiple cores per processor
-  No data sharing among the nodes
-  Various levels of data sharing within a node (memory, caches)

 Xeon Broadwell

3

There is a potential
shared memory
parallelism up to 56
threads.

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

What is OpenMP?

•  An API for Shared Memory Programming
•  OpenMP Thread

-  Execution engine with local memory and access to the shared memory
•  Fork-Join Execution Model:

•  Threads are dynamically created and managed by the OpenMP runtime
•  Major OpenMP API components:

-  Parallelization
-  Data Sharing
-  Work Sharing
-  Synchronization

•  OpenMP API consists of
-  Compiler directives,
-  Runtime library routines
-  Environment variables

Master
Thread

Thread 0

Thread
1

Master
Thread

Thread
0

Thread 3

Master
Thread

Thread
2

Master
Thread

Thread
0

Thread 1

Thread
2

Thread
1

Parallel
Region 1

Parallel
Region 2 Parallel

Region 3

4

Fortran: !$omp

C/C++: #pragma omp

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Parallelization, Data Sharing, Work Sharing
•  Parallelization:
-  parallel:
o  Threads are being forked
o  All threads execute same code

•  Important Data Sharing Clauses
-  shared: default
-  private: local to a thread
-  reduction: values calculated

across all threads, e.g. a global sum
-  firstprivate,lastprivate, etc
-  Some default data scoping rules, but

if in doubt use data sharing clause
-  A good practice: default (none)

(sometimes not feasible)
•  Work Sharing

-  do(Fortran)/for(C): loop iterations
-  sections: code blocks

•  he threads with

How many threads are working?
 setenv OMP_NUM_THREADS nt
-  Runtime library call overwrites

env variable
omp_set_num_threads (nt)

-  Clause is the strongest
omp parallel num_threads (nt)

5

!$omp parallel do num_threads(4)
 do i = 1, n
 do j = 1, n
 a (i) = b (i, j) + 5.
 end do
 end do
!$omp end parallel do

#pragma omp parallel for num_threads(4)
 for (i = 1; i<=n; i++){
 for (int j = 1; j <= n; j++) {
 a (i) = b (i, j) + 5.
 } }
 Fortran: i and j are private by default

C: i is private, j is shared by default. It
needs to be declared or declared within
the parallel region, as in the example

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Scheduling the Work

•  Who is doing what?
•  omp for/do schedule(static, chunk-size):

-  Loop chopped up into approximately equal blocks
-  Each thread assigned a block of iterations
-  Lowest overhead
-  Default for most compilers
-  Good if the workload is balanced

 •  omp for/do schedule (dynamic, chunk-size)
-  Threads request chunks until no more are left
-  More overhead than static
-  Better load-balance if the work per chunk varies

• Others: guided, auto
!$omp parallel

!$omp do schedule(dynamic)
 do i = 0, n
 call sub1(a, b, c, i)
 end do
!$omp end do

!$omp end parallel
 6

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Other Important Constructs
•  Synchronization
-  barrier explicitly synchronizes all threads in a team

o  Removable implicit barriers at the end of work sharing constructs (nowait clause)
o  Non-removable implicit barriers at the the end of parallel construct

-  critical
o  Region of code accessed by one thread at a time

-  atomic:
o  Memory location updated atomically
o  Faster than critical, if applicable

-  Others: flush,ordered

•  he threads with

7

•  Another type of work-sharing: One does the work, the
others sleep

-  single
o  Executed by a single thread
o  Implicit barrier

•  Some things should only be done by the boss
-  master

o  Executed only by the master thread
o  No implicit barrier

•  he threads with

!$omp parallel do
 do i =1,npt
 …
!$omp critical
 call lib_sub1(t_shared))
!$omp end critical

 …
 end do
!$omp end parallel do

subroutine lib_sub1 (is)
 logical first
 save first
 if (first) then
 first = .false.
 do_stuff (is)
 endif
 return
end

Beware of non-threadsafe
library calls:
e.g. write to a global
variables by multiple threads

… or spin

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

What is Vectorization?
•  Execute a Single Instruction on Multiple Data

do i = 1, n

 a(i) = x(i) + y(i)

end do

for (i=0; i<n+1;i++)

 a[i] = x[i] + y[i]

•  Scalar mode
–  one instruction produces one result
–  e.g. vaddss, (vaddsd)

•  Vector mode
–  one instruction can produces multiple

results
–  e.g. vaddps, (vaddpd)

Note: Image borrowed from Intel Tutorial!
8

4 floats in SSE
8 floats for AVX
16 floats for AVX512

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

•  It is not always possible for the compiler to vectorize a loop, due to
assumed dependences

•  Vendors provided directives/pragmas for loop vectorization
•  OpenMP 4.0 provides a standardization for vectorization via the SIMD

construct
-  The loop is subdivided into chunks that fit in a SIMD vector (strip-mining)

Vectorization with OpenMP 4

#pragma omp simd <clauses>

#pragma omp declare simd <clauses>

9

to vectorize loops

vector routines

void addit (double* a, double *b, int n, int off)

#pragma omp simd ?
 for (int i = 0; i < n; i++ {

 a [i] = b [i] + a [i – off]

 }

off <= 0 ok
off > 0 might be incorrect!!

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Golden Rules for OpenMP 4 SIMD Constructs
•  Don’t use them. Let the compiler vectorize, if possible:

-  Prefer simple “for” or “do” loops over “while”
-  Disambiguate function arguments, via compiler flags eg,

-  –fargument-noalias or –restrict for Intel compilers
-  Inspect optimization reports (Intel) to find obstacles

•  OpenMP simd directives are commands to the compiler, not hints:
-  The user is responsible for correctness!
-  Use data scoping clauses as necessary

10

YOU are responsible
for correctness!

•  Only use as last resort!
-  Time consuming loops are not vectorized by

compiler
-  Optimization report shows “false” assumed

dependences

•  Vectorization may change the results, e.g. reduction

operations, transcendental functions, others.

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Example: C++ SIMD Vectorization

….
 for(int k=0; k<ncells3; ++k){
 for(int j=0; j<ncells2; ++j){
 for(int i=0; i<ncells1; ++i){
 Real vx = w(IVX,k,j,i);
 Real vy = w(IVY,k,j,i);
 Real vz = w(IVZ,k,j,i);
 for(int ifr=0; ifr<nfreq; ++ifr){
 Real ds = pco->dx1v(i);
 ….

 for(int n=0; n<nang; ++n){
 Real vdotn = vx*prad->mu(0,k,j,i,n)+vy*prad->mu(1,k,j,i,n)
 + vz*prad->mu(2,k,j,i,n)
 vdotn *= invcrat
 Real adv_coef = tau_fact * vdotn * (3.0 + vdotn * vdotn);
 Real q1 = ir(k,j,i,n+ifr*nang) * (1.0 - adv_coef);
 temp_i1(k,j,i,n+ifr*nang) = q1;
 temp_i2(k,j,i,n+ifr*nang) = adv_coef
 }}}}}

11

 LOOP BEGIN at src/radiation/integrators/rad_transport.cpp(111,16)
 remark #15344: loop was not vectorized: vector dependence
prevents vectorization
 remark #15346: vector dependence: assumed ANTI dependence
between prad line 116 and temp_i2.temp_i2 line 121
LOOP END

#pragma omp simd

User confirmed: No overlap
of prad and temp_i2:

Ok to use simd !

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Example: C++ SIMD Reduction

 ….
 Real er0 = 0.0;
 …
 for(int ifr=0; ifr<nfreq; ++ifr){
#pragma omp simd reduction (+:er0)
 for(int n=0; n<nang; ++n){
 Real ir_weight = lab_ir[n+ifr*prad->nang];

 er0 += ir_weight;
 ..
 }
 er0 *= prad->wfreq(ifr);
 }

12

shared variable, updated to
hold an accumulated sum =>
use reduction clause

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Example: SIMD for Outer Loop Vectorization
!$omp simd private(d)
 do i = 1, n
 d = 0.
 do j = 1, nd
 d = d + (a(j, i) - b (j)) ** 2
 end do
 dis (i) = sqrt (d)
 end do

Inner loop with
low trip count

Outer loop with
 high trip count

13

ifort –c –qopt-report=5 –xcore-avx2 outer.f90

LOOP BEGIN at outer.f90(19,8)
 remark #15542: loop was not vectorized: inner loop was already vectorized
LOOP BEGIN at outer.f90(21,11)
remark #15300: LOOP WAS VECTORIZED

LOOP BEGIN at outer.f90(19,8)
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
 LOOP BEGIN at outer.f90(21,11)
 remark #15548: loop was vectorized along with the outer loop

ifort –c –qopenmp-simd –qopt-report=5 –xcore-avx2 outer.f90

0

1

2

3

4

5

6

100 x 100 100000 x 4

tim
e

in
 s

ec
s

Outer on Xeon Bro

no simd

simd

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Example: SIMD Enabled Subroutine

14

subroutine test_linear(x, y)
!$omp declare simd (test_linear)
real(8),intent(in) :: x
 real(8),intent(out) :: y
 y = 1. + sin(x)**3
end subroutine test_linear

•  Compiler generates SIMD-enabled (vector) version of a scalar subroutine that can be
called from a vectorised loop

remark #15347: FUNCTION WAS VECTORIZED with ymm2, simdlen=4,
remark #15415: vectorization support: indirect load was generated for the variable <x>
remark #15329: vectorization support: indirect store was emulated for the variable <y>
remark #15462: unmasked indexed (or gather) loads: 1
remark #15463: unmasked indexed (or scatter) stores: 1 SLOW!

with linear(ref)

remark #15347: FUNCTION WAS VECTORIZED with ymm2, simdlen=8, unmasked,
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1 Fast

!$omp simd
do i = 1, n
 …
 call test_linear (a(i), b(i))
end do

0

2

4

6

8

10

12

declare simd declare + linear
ref

no declare

Time in secs on Xeon Bro

 linear(ref(x, y))

OpenMP 4.5

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Compiling OpenMP Codes
•  Intel icc/ifort
 pfe27> module load comp-intel
pfe27> module list
Currently Loaded Modulefiles:
 1) comp-intel/2016.2.181

icc/ifort –qopenmp –c test.c/.f

icc/ifort –qopenmp-simd –c test.c/.f

pfe27 > module load gcc
pfe27 > module list
Currently Loaded Modulefiles:
 1) gcc/6.2

gcc/gfortran –fopenmp –c test.c/.f

gcc/gfortran –fopenmp-simd –c test.c/.f

15

Add –qopt-report=5 for
optimization report

•  Gnu gcc/gfortran

“omp simd” only,
No omp parallel
No OpenMP runtime

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Running OpenMP Codes on Pleiades

•  Using Intel KMP or OMP Affinity environment variables for thread
placement

•  Using tools, e. g, mbind.x

setenv OMP_NUM_THREADS 8
setenv OMP_PROC_BIND spread
setenv OMP_PLACES cores
./test.x

setenv OMP_NUM_THREADS 8
mbind.x –t<n> -c<p,s,..>./test.x

16

Do not mix the thread
placement methods, one
never knows how they play
with each other!

#threads packed or spread placement

•  Calls to runtime libraries:
sched_setaffinity, sched_getaffinity

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Thread Placement Examples

setenv OMP_PROC_BIND spread
setenv OMP_PLACES cores

setenv OMP_PROC_BIND close
setenv OMP_PLACES cores

17

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Thread Placement Examples

setenv OMP_PROC_BIND spread
setenv OMP_PLACES cores

setenv OMP_PROC_BIND close
setenv OMP_PLACES cores

18

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Use of MPI + OpenMP on Pleiades

•  Compilation
module load mpi-sgi/mpt comp-intel
env MPICC_CC=icc mpicc -o th.x -O3 -qopenmp th.f90

•  Enable SGI MPI for running hybrid codes

 setenv MPI_DSM_DISTRIBUTE

setenv MPI_OPENMP_INTEROP
•  Set the number of threads to be used

setenv OMP_NUM_THREADS 4
•  Run the executable

mpiexec –np 56 ./th.x

•  Request sufficient resources via PBS

 qsub -l select=8:ncpus=28:mpiprocs=7:model=bro

19

Compiling and Running Hybrid Codes

by default gcc

alternatively, use
mbind.x or omplace for
process binding

alternatively generate
new PBS_NODEFILE

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Summary

20

•  OpenMP is a compiler directive based shared memory
programming API

•  Provides an easy way to parallelize time consuming loops
within one Pleiades node
-  Multithreading done by the compiler behind the scenes

•  Care has to be taken to synchronize access to shared data
-  User’s responsibility
-  Debugging may be hard

•  Vectorization with OpenMP SIMD requires great care and
understanding of the hardware architecture

•  Other OpenMP related possible topics:
•  Hybrid MPI+OpenMP details
•  Optimizing and debugging OpenMP
•  OpenMP tasking,
•  Off-loading to co-processors with OpenMP or OpenACC

As you like it.

Let us know!

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Use of MPI + OpenMP on Pleiades

•  Running OpenMP codes on Pleiades

https://www.nas.nasa.gov/hecc/support/kb/OpenMP_209.html

https://www.nas.nasa.gov/hecc/support/kb/porting-with-openmp_103.html

•  Thread and Process Placement

https://www.nas.nasa.gov/hecc/support/kb/ProcessThread-Pinning-Overview_259.html

•  Running hybrid codes on Pleiades

https://www.nas.nasa.gov/hecc/support/kb/With-SGIs-MPI-and-Intel-OpenMP_104.html

•  OpenMP Specification

http://www.openmp.org/specifications/

•  OpenMP Training Material

http://www.openmp.org/resources/tutorials-articles/

https://computing.llnl.gov/tutorials/openMP/

•  OpenMP SIMD Vectorization

http://primeurmagazine.com/repository/PrimeurMagazine-AE-PR-12-14-32.pdf

http://www.hpctoday.com/hpc-labs/explicit-vector-programming-with-openmp-4-0-simd-
extensions/

 21

References

